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Abstract 
 
The physical principles of hydrostatic stability for floating systems were first pronounced by 
ARCHIMEDES in antiquity, although his demonstration examples were limited to simple 
geometrical shapes. The assessment of stability properties of a ship of arbitrary shape at the design 
stage became practically feasible only about two millennia later after the advent of infinitesimal 
calculus and analysis. The modern theory of hydrostatic stability of ships was founded 
independently and almost simultaneously by Pierre BOUGUER (“Traité du Navire”, 1746) and 
Leonhard EULER (“Scientia Navalis”, 1749). They established initial hydrostatic stability criteria, 
BOUGUER’s well-known metacenter and EULER’s restoring moment for small angles of heel, and 
defined practical procedures for evaluating these criteria. Both dealt also with other aspects of 
stability theory. This paper will describe and reappraise the concepts and ideas leading to these 
historical landmarks, compare the approaches and discuss the earliest efforts leading to the practical 
acceptance of stability analysis in ship design and shipbuilding. 
 
 
1. INTRODUCTION 
 
Human awareness of the significance of ship 
stability for the safety of ocean voyages is 
probably as ancient as seafaring. An intuitive, 
qualitative understanding of stability and of the 
risks of insufficient stability must have existed 
for millennia. The foundations for a scientific 
physical explanation and for a quantitative 
assessment of hydrostatic stability were laid by 
ARCHIMEDES in antiquity (“On Floating 
Bodies”, [1]). Yet despite many important 
contributions and partially successful attempts 
by scientists in the early modern era like 
STEVIN, HUYGENS, and HOSTE among 
others it took until almost the mid-eighteenth 
century before a mature scientific theory of 
ship hydrostatic stability was formulated and 
published. Pierre BOUGUER (“Traité du 
Navire”, 1746, [2]) and Leonhard EULER 

(“Scientia Navalis”, 1749, [3], [4]) were the 
founders of modern ship stability theory, who 
quite independently and almost simultaneously 
arrived at their landmark results for hydrostatic 
stability criteria. BOUGUER developed the 
theory and introduced the terminology of the 
metacenter and the metacentric curve. EULER 
defined the criterion of the initial restoring 
moment, which for hydrostatic stability 
amounts to an equivalent concept. The full 
implementation of computational methods for 
evaluating these criteria and their acceptance 
by practitioners took even several decades 
longer.Paradoxically this chain of events raises 
two nearly contradictory questions, which this 
paper will address: 
 
o Why did it take so long for these 
formalized, quantitative criteria for the stability 
of ships of arbitrary shape to be pronounced? 
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o When at last the discoveries were made, 
why then did two independent, but equivalent 
solutions suddenly appear almost at the same 
time? 
 
The knowledge required to evaluate the 
stability of a ship rests on many concepts and 
requires many autonomous discoveries to be 
made and to be brought into concerted 
application. These include: 
 
o The idea of conceptual experiments in 
dealing with mechanical systems. 
o The abstraction of thinking in terms of 
resulting forces and moments of weight and 
buoyancy (“lumped effects”) substituted for 
distributed effects of gravity and pressure. 
o The axiom of force equilibrium, here  
between weight and buoyancy force (Principle 
of ARCHIMEDES). 
o The axiom of moment equilibrium in a 
system at rest. 
o A definition and a test for system stabi-
lity. 
o A method for finding the combined 
weight and center of gravity (CG) for several 
weight components. 
o A principle for finding the resultant 
buoyancy force and its line of action (through 
the center of buoyancy, CB). 
o A method for calculating volumes and 
their centroids, first for simple solids, then for 
arbitrary ship shapes. 
o An analytical formulation of a stability 
criterion (for infinitesimal and for finite angles 
of inclination). 
 
Although the physical principles of hydrostatic 
stability were already established by 
ARCHIMEDES, it took a long time before the 
analytical formulation of stability criteria could 
be pronounced for the general case of ships, 
essentially by means of calculus, and before 
numerical evaluations became feasible. 
BOUGUER and EULER were the first to find 
an analytical criterion for initial stability, 
BOUGUER in terms of the metacenter. 

EULER in terms of the initial restoring 
moment. BOUGUER went beyond this in 
several practical aspects. The intriguing 
question remains: How did two scientific 
minds work independently to come to rather 
equivalent results? What were their sources, 
their background, their approach, their logic, 
their justification and verification? Which were 
their unique original thoughts and how did they 
differ? 
 
To answer these questions it is not sufficient to 
look only at their final results and conclusions, 
but it is necessary to examine more closely the 
methodical approaches taken to the ship 
stability issue and to compare the trains of 
thought by which the individual authors arrived 
at their results. In this article we will review the 
developments that led to this historical stage 
when modern hydrostatic stability theory was 
founded. 
 
 
2. PRECURSORS  
 
2.1 Archimedes 

 
ARCHIMEDES of Syracuse (ca. 287-212 
B.C.), the eminent mathematician, mechanicist 
and engineering scientist in antiquity, is also 
the founder of ship hydrostatics and hydrostatic 
stability, which he established as scientific 
subjects on an axiomatic basis. ARCHIMEDES 
was brought up in the early Hellenistic era in 
the tradition of Greek philosophy, logical rigor 
and fundamental geometric thought. 
ARCHIMEDES was well educated in these 
subjects in Syracuse and very probably also 
spent an extended study period in Alexandria, 
the evolving Hellenistic center of science, at 
the Mouseion (founded in 286 B.C.). There he 
met many leading contemporary scientists, e.g., 
DOSITHEOS, ARISTARCHOS and ERATO-
STHENES, with whom he maintained lifelong 
friendships and scientific correspondence. 
Steeped in this tradition of Greek geometry and 
mechanics, ARCHIMEDES learned how to 
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excel in the art of deductive proofs from first 
premises usually based on conceptual models, 
i.e., models of thought, by which physical 
reality was idealized. But ARCHIMEDES was 
also unique, as many legends on his engi-
neering accomplishments tell us, in applying 
practical observation to test his scientific 
hypotheses and to develop engineering appli-
ations, although these achievements are not 
mentioned in his own written work. 
 
We are fortunate that many, though not all, of 
ARCHIMEDES’ treatises are preserved, all 
derived from a few handwritten copies made in 
the Byzantine Empire during the 9th  and 10th 
centuries and transmitted to posterity on 
circuitous routes to resurface essentially 
through the ARCHIMEDES revival during the 
Renaissance. Luckily, one Greek manuscript, 
which was later lost, had been translated into 
Latin by the Dominican monk Willem van 
MOERBEKE. This translation, which was 
published in 1269 and was later named Codex 
B, also contained ARCHIMEDES’ treatise “On 
Floating Bodies”, Books I and II. It became the 
only accessible reference to ARCHIMEDES’ 
work on hydrostatics for many centuries until 
in 1906 most surprisingly an old 10th century 
palimpsest was rediscovered in a Greek 
monastery in Constantinople by J. HEIBERG  
[5]. This palimpsest under the writing of a 12th 
century monk of a Greek prayerbook had 
retained significant traces of the rinsed off text 
of a Greek manuscript from ARCHIMEDES 
including the Greek version of “On Floating 
Bodies”. ARCHIMEDES’ texts were soon 
reconstructed from this source, transcribed and 
translated into modern languages (e.g. HEATH 
[1]). Meanwhile this palimpsest, which had 
disappeared in private possession in the 
aftermath of the Greek-Turkish war in 1920-22 
has turned up again recently and is under new 
scientific evaluation at the Walters Art 
Museum in Baltimore [6]. It is on these sources 
primarily that we can base a reliable evaluation 
of ARCHIMEDES’ contributions to ship 
hydrostatics today. 

 
ARCHIMEDES preceded his work on 
hydrostatics by a number of other treatises 
establishing certain axioms of mechanics: 

 
The Law of the Lever: 
In his treatise “The Equilibrium of Planes” 
ARCHIMEDES first deals with the equilibrium 
of moments about a fulcrum in a lever system. 
Although he claims to deduce this principle 
from geometric reasoning alone, it is actually 
understood today that the law of the lever is 
equivalent to the axiom of moment equilibrium 
in mechanics. Second, he introduces the 
concept of “centroids” of quantities (areas, 
volumes, weights) into which the quantities can 
be “lumped” as concentrated effects so that 
moment equilibrium is retained. Third, he 
proposes a method for finding the “compound 
centroid” of a system of components, e.g., a 
center of gravity. Finally, he proves the critical 
“centroid shift theorem” i.e., a rule for the shift 
of the system centroid when some quantity is 
added to, removed from or shifted within the 
system. All of these concepts and results are 
essential physical principles as prerequisites for 
his work on hydrostatics. 

 
Quadrature: 
In his treatise “The Quadrature of the Parabola” 
ARCHIMEDES illustrates by the example of 
the parabola how the Greeks determined areas 
and volumes of elementary shapes without the 
availability of calculus. Here he uses a method, 
well-known since EUDOXUS [7], based on an 
inscribed polygonal approximant which is 
continually refined by interval halving until 
under the given premises it converges to the 
given curve within a specified error tolerance.  
This type of deduction was later called 
“method of exhaustion”. Thus the quadrature 
problem is reduced to that of evaluating the 
sum of a finite, truncated or sometimes even 
infinite series of approximations. This method 
of quadrature generally is not equivalent to 
calculus for lack of a limiting process to 
infinitesimal step width, but has nonetheless 

 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 

Escuela Técnica Superior de Ingenieros Navales 
 4 

inspired many future developments until this 
day. 

 
The Method of Mechanical Theorems: 
This famed treatise, which was actually also 
discovered in the palimpsest of 1906, explains 
how ARCHIMEDES used a reasoning based 
on principles of mechanics (like moment 
equilibrium of volume quantities) in deriving 
geometrical results (like volume centroids). He 
regarded such findings as propositions for later 
rigorous deduction by strictly geometrical 
proofs. 
 
On Floating Bodies: 
In this treatise ARCHIMEDES makes use of 
all these prior results and proceeds to lay the 
foundations for ship hydrostatics and stability 
in the following steps [1], [8]: 

 
Book I of this treatise begins with Postulate 1 
describing the properties of a fluid at rest 
axiomatically. 

 
“Let it be supposed that the fluid is of such 
character that, its parts lying evenly (N.B.: 
at the same level) and being continuous 
(N.B.: coherent), that part which is thrust the 
less is driven along by that which is thrust 
the more and that each of its parts is thrust 
by the fluid which is above it in a 
perpendicular direction, unless the fluid is 
constrained by a vessel or anything else”. 

 
Although ARCHIMEDES does not use the 
word “pressure” and the Greeks did not know 
that concept in antiquity, he does infer that 
parts under more pressure would drive parts 
under less pressure so that a fluid cannot be at 
rest unless the pressure is uniform at a given 
depth, while the weight of a vertical column of 
fluid rests on the parts below it. From these 
very simple axiomatic premises, which do not 
permit evaluating the local pressure anywhere 
in the fluid, ARCHIMEDES is able to derive 
the principles of hydrostatic equilibrium and 
stability of floating bodies. This is achieved by 

considering the equilibrium of the resultant 
buoyancy and gravity forces and of their 
moments. 
 
ARCHIMEDES’ famous Principle of 
Hydrostatics is stated in Book I, Proposition 5: 
 

“Any solid lighter than a fluid will, if 
placed in the fluid, be so far immersed that 
the weight of the solid will be equal to the 
weight of the fluid displaced” [1]. 

 
The proof of this law, usually pronounced 
today as ∆ = γ V, is brilliantly brief and 
conclusive. In all brevity it rests on the 
argument that in equilibrium the solid is at rest 
in a fluid at rest, thus if the body is removed 
from the fluid and the cavity left by its 
underwater volume is filled with fluid matter, 
then the fluid can only remain at rest if the 
replacing fluid volume weighs as much as the 
solid, else the fluid would not remain in 
equilibrium and hence at rest. 
 
In Book II, mainly Proposition 2, 
ARCHIMEDES deals with the stability of 
hydrostatic equilibrium by treating the special 
case of a solid of simple shape, viz., a segment 
of a paraboloid of revolution of homogeneous 
material whose specific gravity is less than that 
of the fluid on whose top it floats. In 
equilibrium it floats in an upright condition. 
The stability is tested by inclining the solid by 
a finite angle to the vertical, but so that the base 
of the segment is not immersed. The 
equilibrium is defined as stable if the solid in 
the inclined position has a restoring moment 
tending to restore it to the upright condition. 
 
For the homogeneous solid this stability 
criterion is readily evaluated geometrically by 
examining the lever arm between the buoyancy 
and the gravity force resultants (Figure 1). The 
buoyancy force acts through the centroid of the 
underwater volume B, which ARCHIMEDES 
finds for the inclined paraboloid from theorems 
proven earlier. The gravity force or weight acts 
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through the Center of Gravity R of the 
homogeneous solid. Our conventional righting 
arm, the projection of BR on the horizontal, is 
positive. Instead of using this stability measure, 
ARCHIMEDES takes a shortcut for this 
homogeneous solid by splitting off and 
removing the weight of the submerged part of 
the solid ∆1 and the corresponding equal share 
of the buoyancy force, which have  no moment 
about B because they both act through B. Thus 
only the weight of the abovewater section of 
the solid ∆2, acting through C, and the equal 
and opposite buoyancy force increment, acting 
through B, are taken into account. The centroid 
C is found from B and R by applying the 
centroid shift theorem when removing the 
underwater part from the system. This yields a 
positive “incremental righting arm” for the 
force couple of ∆2, acting through B and C 
respectively. The restoring moment is thus 
positive and the solid will return to the upright 
position. 
 

 
 
Figure 1: Restoring moments, righting arms for 
  inclined  homogeneous  paraboloid, based  on  
  ARCHIMEDES’ “On Floating Bodies”, Book 
  II [1] (from [10]). 
 
This application of the hydrostatic stability 
criterion by ARCHIMEDES is limited to the 
special case of a homogeneous solid of simple 
parabolical shape. It demonstrates the physical 
principles of the hydrostatic stability problem 

for a finite angle of inclination. It does not 
extend to floating bodies of arbitrary shape and 
of non-homogeneous weight distribution, 
hence actual ships. Still the foundations were 
laid to enable others much later to treat the 
generalized case of the ship on the same 
fundamental grounds. 
 
A more detailed appraisal of ARCHIMEDES’ 
contributions to the hydrostatic stability of 
floating systems and a thorough historical 
account is given by NOWACKI [10]. 
 
 
2.2 Stevin and Pascal  
 
In the beginning of the modern era of science 
the manuscripts of ARCHIMEDES had been 
rediscovered by several humanists during the 
Renaissance and were made accessible in print 
after 1500 by several editions in Greek, Latin 
and later by translations into modern languages 
[1], [8], [9]. 
 
Simon STEVIN (born 1548 in Bruges, died 
1620 in Leyden), the celebrated Flemish/Dutch 
mechanicist and hydraulic engineer, who knew 
and admired ARCHIMEDES’ works, was 
probably the first modern scientist who 
resumed and resurrected the study of 
hydrostatics and applied it to hydraulics, but 
also to ships. In his important work “De 
Beghinselen des Waterwichts” [11], published 
in Dutch in 1586 and translated into Latin by 
Willibrord Snellius in 1605, he deals with the 
principles of hydrostatics and hydraulics. He 
adopts the idea of “specific gravity” of a fluid 
from ARCHIMEDES and introduces the 
concept of “a hydrostatic pressure distribu-
tion”, as we would call it today, proportional to 
the weight of a water prism reaching down to 
the depth in question. This enables him to 
calculate water loads on walls in a fluid, an 
important foundation in hydraulic engineering. 
He also rederives ARCHIMEDES’ Principle of 
Hydrostatics. However when he proceeds to 
examine the hydrostatic stability of a ship in 
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his later note “Van de Vlietende 
Topswaerheyt” [11], he correctly reconfirms 
that for equilibrium buoyancy and weight force 
resultants must act in the same vertical line 
through the centers of buoyancy (CB) and 
gravity (CG). But he erroneously concludes 
that for stability the CB must always lie above 
the CG. This error occurred because – unlike 
ARCHIMEDES - he neglected the centroid 
shifts resulting from the volume displacement 
from the emerging to the immersing side in 
heel. Despite this flaw in an application 
STEVIN deserves high recognition for 
founding modern hydrostatics on the concept 
of hydrostatic pressure. 
 
Blaise PASCAL (born 1623 in Clermont, died 
1662 in Paris) is also counted among the 
modern refounders of hydrostatics. He was 
familiar with ARCHIMEDES’ and probably 
with STEVIN’s work. In his “Traité de l’ 
équilibre des liqueurs”, Paris (1663), he arrives 
at similar conclusions and justifications 
regarding the fundamentals of hydrostatics in a 
fluid as STEVIN did, though he did not deal 
with ships. The assertion and experimental 
verification of hydrostatic laws also being 
applicable to air belong to his original 
contributions to this subject. 
 
 
2.3 Huygens 
 
Christiaan HUYGENS (born 1629 in The 
Hague, died 1695 in The Hague), the eminent 
Dutch physicist, at the youthful age of 21 made 
an excursion into hydrostatic stability, which is 
not well known. In 1650 he wrote a three 
volume treatise “De iis quae liquido 
supernatant” [12], in which he applies the 
methodology of ARCHIMEDES to the stability 
of floating homogeneous solids of simple 
shape, reconfirming ARCHIMEDES’ results 
and extending the applications to floating 
cones, parallelepipeds, cylinders etc., at the 
same time studying the stability of these solids 
through a full circle of rotation. He never 

published this work in his lifetime because he 
felt it was incomplete or “of small usefulness if 
any” or in any case not sufficiently original in 
comparison to ARCHIMEDES. He wanted the 
manuscript to be burnt, but it was found in his 
legacy and at last published in 1908. 
HUYGENS must be admired for his deep 
insights into ARCHIMEDES’ fundamentals of 
hydrostatics and for his own creative 
extensions. He recognized e.g. that for 
homogeneous, prismatic solids their specific 
weight and their aspect ratio are the essential 
parameters of hydrostatic stability. In his 
derivations he used a formulation based on 
virtual work as a principle of equilibrium. 

 
These examples of famous physicists between 
1500 and 1700 working in hydrostatics and on 
hydrostatic stability of floating solids and ships 
demonstrate that the foundations inherited from 
ARCHIMEDES were understood by certain 
specialists, but had not yet been extended or 
applied to the design and stability evaluation of 
actual ships. Although the physical principles 
of stability were understood, the practical 
evaluation of volumes, volume centroids, 
weights and centers of gravity for floating 
bodies of arbitrary shape and non-
homogeneous weight distribution de facto still 
posed substantial difficulties. These were not 
overcome before the advent and application of 
calculus during the 18th century. 
 
 
2.4 Hoste 
 
The French mathematics professor Paul 
HOSTE, s.j., (1652-1700) was the first to 
attempt to quantify the problem of ship 
stability.  He did so in his 1697 treatise of 
naval architecture,  Théorie de la construction 
des vaisseaux, which was appended to his book 
on naval tactics, written at the behest of 
Admiral TOURVILLE [13].  However, he did 
not apply calculus to the problem, which was 
not yet widely known. 
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HOSTE assumes, without citing STEVIN, that 
the CG and CB were in a vertical line; but he 
also allows without proof that the CG could be 
above the CB. However, to explain how this 
could be possible without the ship tipping over, 
he also assumes that the buoyancy force was 
equally divided between the two halves of the 
ship, forming the base of a triangle. He 
continues this error by stating: 
 

"If the center of gravity of the ship is 
known, the force with which it has to carry 
sail is easily known, which is no other thing 
than the product of the weight of the ship 
by the distance between these centers (of 
weight and displacement)” [14]. 

 
In modern terms, the righting moment is equal 
to ∆ x ( KG – KB ). In other words, the higher the 
center of gravity, the more stable the ship. 
 
Although he does not provide a theoretical 
means for determining this “power to carry 
sail”, HOSTE does describe a procedure which 
could empirically demonstrate this: The 
inclining experiment.  HOSTE asserts that, by 
measuring the angle of inclination due to 
suspending a weight from a boom at a certain 
height, that the “force to carry sail” can be 
determined [15].  Although HOSTE's argument 
contains several fundamental errors, it was the 
first attempt to express the stability of a ship in 
mathematical terms, and his book remained the 
only published inquiry into stability for almost 
half a century.   
 
 
 2.5 La Croix 
 
César Marie de LA CROIX (1690-1747) was 
the head of administration and finance for the 
Rochefort dockyard, and maintained the 
records for the galley fleet. He was not a 
scientist or engineer. Yet he developed some 
fundamental concepts on ship motions and 
hydrostatic stability, derived for a floating 
parallelepiped and published in 1736 [16], so 

certainly before BOUGUER’s and EULER’s 
work appeared. 
 
LA CROIX was interested in the motions, but 
also in the hydrostatic restoring moments for 
this parallelepiped when heeled. He correctly 
understood the role of weight and buoyancy 
forces acting in the same vertical line in 
equilibrium. He also followed ARCHIMEDES 
in his stability criterion by examining the 
heeled body and requiring positive righting 
arms, accounting for the wedge volume shifts. 
But he falsely determined the influence of the 
wedge shift moments and hence the righting 
arms. Besides, since he lacked integration 
methods based on calculus, he was not able to 
generalize his results for arbitrary section and 
waterplane shapes, hence to make them 
applicable to ships. 
 
Yet although LA CROIX’s work was flawed, it 
may have triggered EULER’s renewed interest 
in ship hydrostatics. In 1735 EULER was 
asked by the Russian Imperial Academy of 
Sciences to review the treatise [16], which LA 
CROIX had submitted there prior to 
publication. EULER quickly responded and 
appraised the merits of LA CROIX’s problem 
formulation, but also pointed out the 
weaknesses of the solution. He then put on 
record his own correct solution for the initial 
restoring moment, hence stability criterion, for 
the parallelepiped (or any other body of 
constant cross sectional shape), which he 
claimed to have found earlier [17]. This dates 
EULER’s earliest written mention of the 
criterion for this special case to 1735. In 1736 
in reply to de LA CROIX’s rebuttal EULER 
also provided the complete explicit derivation 
of this result. 
 
 
2.6 Sailing vessel propulsion and maneu-

vering 
 
Questions of ship propulsion, ship motions and 
maneuvering, but also of ship stability have 
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always aroused an acute interest, not only 
among seafarers and shipbuilders, but also in 
the scientific community. The propulsion of 
sailing vessels by the forces of wind, e.g., was 
investigated by ARISTOTLE in antiquity and 
later is associated with such celebrated names 
of scientists as Francis BACON, Thomas 
HOBBES and Robert HOOKE, among others. 
 
Toward the end of the 17th century the subject 
of the propulsion of sailing vessels had gained 
new scientific interest, also under the influence 
of the navies in applying scientific principles to 
ship design and operation. Treatises and 
monographs on the theory of maneuvering and 
on the equilibrium of aerodynamic propelling 
forces and hydromechanic response had 
appeared, notably by Ignace-Gaston PARDIES 
(1673), Bernard RENAU d’ELIZAGARAY 
(1689), Christiaan HUYGENS (1693), Jakob 
BERNOULLI (1695) and Johann (I) 
BERNOULLI (1714). This had led to lively 
controversies, but also to an increasing depth of 
understanding of the mechanics of the sailing 
vessel. In fact through the various treatises the 
principles for applying hydrodynamic under-
water and aerodynamic sail forces to the vessel 
in order to establish its equilibrium position 
had become well understood. At the same time 
the importance of allowing for trim and heel 
(as well as yaw) under these forces and 
moments had been recognized and dealt with, 
although the quantitative assessment of the 
hydrostatic restoring effects remained largely 
an open issue.  Both BOUGUER and EULER 
would begin their investigations into the nature 
of hydrostatic stability with the study of 
propulsion and maneuvering of sailing ships.  
 
 
2.7 Displacement estimates before calculus 
 
The infinitesimal calculus was important to the 
development of stability for several reasons, 
including the practical evaluation of under-
water volume and volume centroids. Yet a 
number of methods to calculate underwater 

volumes (and therefore displacements) were 
developed in the 1500s and 1600s, well before 
any theoretical framework for stability was 
available to make use of it.  Why would 
shipbuilders go through the trouble of making 
such calculations?  It appears that there were 
two separate reasons for this: The development 
of the gunport, and the measurement of cargo 
tonnage. 
 
The gunport was introduced in the early 1500s, 
and came into wide use by the middle of the 
century. This greatly increased the firepower of 
naval ships, but brought two problems; ships 
got much heavier, and with large holes in the 
side of the ship, the available freeboard got 
dramatically smaller. Thus, the margin for error 
in estimating the waterline was considerably 
reduced. To handle this problem, shipbuilders 
like Anthony DEANE (1638-1721) developed 
methods to calculate how much armament, 
ballast and stores should be loaded on a ship to 
bring it to the correct waterline below the 
gunports. DEANE and others made use of 
ship's plans, which were just beginning to be 
employed by shipbuilders as a construction 
guide.  In his manuscript "Doctrine of Naval 
Architecture" [18], never published but widely 
circulated, DEANE demonstrates two methods 
to calculate the area underneath waterlines at 
each “bend” or frame of the hull; using either 
(1) an approximation for the area of a quarter-
circle or (2) by dividing the area into rectangles 
and triangles. DEANE then sums the areas for 
each frame, multiplies by the frame spacing 
and multiplies  the volume by the specific 
weight of water to obtain the displacement.  He 
does this for several different waterlines, 
including the desired waterline below the 
gunports.  When a ship is launched, he can 
immediately determine the light displacement, 
and then calculate how much weight should be 
added to arrive at the design waterline. 
 

A second reason for introducing displacement 
calculations was to more accurately measure 
the cargo capacity of a ship. For example, from 
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1646 to 1669 the Dutch and Danish 
governments carried on a series of negotiations 
on cargo measurement. In 1652 a Dutch 
mathematician Johannes HUDDE identified the 
basic issue of measuring cargo deadweight by 
determining the difference between the weight 
of the ship empty and fully-laden, using a 
difference-in-drafts method.  He suggested to 
the Dutch authorities that they measure the 
waterplane areas at each draft of an actual ship 
in the water (not from plans), by taking 
measurements to the hull from a line extended 
at the side of the ship parallel to the centerline.  
The space between hull and an overall 
rectangle formed by the length and beam was 
then divided into trapezoids and triangles, the 
areas calculated and summed, multiplied by the 
difference in drafts and multiplied by seawater 
density, to obtain cargo tonnage.  Although the 
suggestion was never used, HUDDE's cousin 
Nicolas WITSEN reported it in his 1671 
shipbuilding manuscript "Aeloude en 
hedendaegsche scheepsbouw en bestier" [19]. 
 
 
3. DEVELOPMENT OF STABILITY 
THEORY  
 
3.1  Bouguer 
 
Biographical Sketch  
Pierre BOUGUER (Figure 2) was born on 10 
February 1698 in the French coastal town of Le 
Croisic, near Saint Nazaire at the mouth of the 
Loire.  Educated in the Jesuit school in Vannes, 
he quickly showed himself a child prodigy.  
When his father Jean BOUGUER, a royal 
hydrographer and mathematician, died when 
Pierre was only 15, he applied for his father's 
position. After initial hesitation by the 
authorities, he passed the rigorous exam and 
was given the post of Royal Professor of 
Hydrography. 
 
BOUGUER won several Royal Academy of 
Sciences Prizes for masting, navigation and 
astronomy before he was 30. He moved to the 

 
Figure 2: Portrait of Pierre BOUGUER.  
 
port of Le Havre in 1731, about the same time 
he became a member of the Academy. His 
work caught the attention of the French 
Minister of the Navy MAUREPAS (1701-
1781), who, like COLBERT before him, was 
convinced of the strategic benefit of ship theory 
as a way of compensating by quality against 
the quantitative superiority of the British navy. 
MAUREPAS supported BOUGUER's research 
and sponsored his publications. 
 
In 1734, BOUGUER became involved in a 
controversy over the Earth's shape; those who 
believed in DESCARTES' vortex theories of 
physics held that the Earth was elongated at the 
poles, while those who accepted NEWTON's 
theories of gravitational attraction argued that 
the Earth was wider at the equator due to 
centrifugal force. MAUREPAS also held the 
view that a full understanding of the Earth's 
shape was essential to navigation, so he sent 
BOUGUER, along with several other members 
of the Academy of Sciences (accompanied by 
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two Spanish naval officers) on a Geodesic 
Mission to Peru to measure the arc length of a 
meridian at the equator. One of his companions 
on the Mission was the young Spanish 
lieutenant Jorge JUAN Y SANTACILIA, who 
would later become a prominent naval 
constructor and author of a highly recognized 
treatise on naval architecture. 
 
BOUGUER spent ten years away (1735-1744), 
during which time he not only surveyed and 
calculated a meridian arc length of three 
degrees of latitude, he also performed various 
experiments on gravity and astronomy. It was 
during this Mission, in the peaks and valleys of 
the Andes far from the ocean, that he wrote 
much of his monumental work "Traité du 
navire", the first comprehensive synthesis of 
naval architecture. 
 
"Traité du navire" was published in 1746, 
shortly after BOUGUER's return. He remained 
unmarried, lived in Paris and devoted himself 
to revising his geodesic work, and carrying out 
further studies of naval architecture, 
astronomy, optics, photometry and navigation. 
BOUGUER died in Paris on 15 August 1758, 
aged 60. Further details on BOUGUER’s 
biography and scientific work are presented by 
FERREIRO [20] and DHOMBRES [21]. 
 
Early work on ship theory 
In 1721 BOUGUER was asked by the 
Academy of Sciences in Paris to compare the 
accuracy of two methods of calculating cargo 
tonnage being proposed to the Council of the 
Navy for port fees. Although the 
mathematician Pierre VARIGNON proposed 
estimating the volume of a ship as a semi-
ellipsoid, BOUGUER found that the best 
results came from a proposal of Jean-Hyacinthe 
HOCQUART of Toulon, who used a 
difference-of-waterplanes method that 
employed equal-width trapezoids to estimate 
waterplane areas. This was similar to 
HUDDE's approach but allowed a direct 
calculation of areas from ship's plans. 

BOUGUER would later adopt and refine this 
"method of trapezoids" for his own stability 
work [22]. 
 
In 1727 the Academy offered a Prize for the 
best treatise on masting, which BOUGUER's 
entry won. He postulated that a "point vélique", 
the intersection of the sail force and the 
resistance of water against the bow, should be 
directly above the center of gravity to minimize 
trimming by the bow. In his treatise he relied 
on HOSTE's theories to explain stability, 
although where HOSTE implied that the 
advantage of doubling is through an increase in 
the center of gravity, BOUGUER invoked 
ARCHIMEDES to point out that the buoyancy 
of the added portion of the ship moves the 
center of buoyancy laterally when heeling, thus 
increasing the righting moment. Still, this 
treatise did not yet show any insights into the 
evaluation of trim or heel angles or restoring 
moments that he would develop five years later 
[23].  
 
The metacenter 
BOUGUER probably began formulating his 
theory of stability around 1732, after he had 
moved to Le Havre, for he tested it using the 
little 18-gun frigate Gazelle, laid down in that 
dockyard in May 1732 and delivered in January 
1734 [24]. However, no letters or manuscripts 
from that period survive to confirm this, and 
his derivation of the metacenter would not 
appear in print until 14 years later in "Traité du 
navire". The following steps illustrate 
BOUGUER's derivation of the metacenter in 
his "Traité du navire" [25].    
 
STEP 1: Premises and axioms  
BOUGUER implicitly defines the hydrostatic 
properties of fluids,  based on the principle of 
hydrostatics that weight and buoyancy are 
equal, opposite and act in the same vertical 
line.  He does so without proof, without the use 
of equations and without mentioning 
ARCHIMEDES by name, although he shows 
general familiarity with his work. He also 
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implies through geometrical arguments that the 
pressure of the fluid follows a hydrostatic 
distribution with depth and is everywhere 
normal to the surface of the submerged body. 
 
STEP 2: Magnitude of buoyancy force 
BOUGUER resolves the submerged surface 
into very small elements (though without using 
any calculus notations at this point) and 
equates the vertical components of the hydro-
static pressure forces to the weight of the water 
column resting on top of the element in the 
interior of the submerged volume conceptually. 
Hence, the total pressure resultant is equal to 
the total weight of water filling the submerged 
volume. He thus reconfirms the law of 
ARCHIMEDES by pressure integration. 
 
STEP 3: Measurement of volume and centroids 
BOUGUER first suggests two methods for 
calculating the volume of the ship as a regular 
solid. The first is to model the ship as an elli-
psoid, as originally proposed by VARIGNON, 
and the second is to divide it into prisms. The 
set of quadrilateral prisms then forms a 
polyhedral approximant of the hull surface for 
volume summation. BOUGUER sees clearly 
that, by analogy, the same principle of poly-
gonal approximation also holds for evaluating 
the area of planar curves. He thus quickly 
homes in on a quadrature rule for curves based 
on equally wide trapezoids, his favorite rule, 
which later became known as trapezoidal rule. 
He uses it to measure areas of waterline 
"slices" and then combining those two-dimen-
sional slices to obtain a three-dimensional 
volume. Although he borrowed the idea from 
HOCQUART's 1717 proposal, BOUGUER 
refined the method, first by dividing each 
waterplane into many sections (HOCQUART 
only proposed three sections), and second by 
taking the areas of several waterlines to 
develop the entire volume of the hull 
(HOCQUART took only one "slice"). 
 
BOUGUER then arrives at the conclusion that 
his quadrature rule is suitable for evaluating the 

integral of any continuous function of one 
variable or, if applied recursively, for 
continuous functions of any number of 
independent variables. Interestingly he thus 
interprets the analytical formulation of stability 
criteria, which he introduces later, as being 
equivalent to the discretized quadrature rules 
presented here earlier. The ancestry of his 
concepts from both practical shipbuilding 
traditions and modern calculus is still leaving 
some visible traces. 
 
BOUGUER then digresses for many pages into 
using the trapezoidal rule to calculate 
incremental waterlines for estimating a ship's 
payload capacity, and gives various rules for 
tunnage admeasurement. 
 
For finding the centroid of the underwater 
volume, the center of buoyancy CB, 
BOUGUER then begins by explaining, in very 
simplistic terms, how to use the sum-of-
moments method to determine the centroid of 
an object. He then derives the area centroid of a 
planar figure (2D case), then the volume 
centroid of a solid (3D case), which for a ship 
he calls the "center of gravity of the hull". He 
then discusses by example how to evaluate 
these expressions numerically by the method of 
trapezoids. 
 
STEP 4: Stability criterion 
The center of buoyancy having been 
determined, BOUGUER next explains why he 
chooses the metacenter as the initial stability 
criterion, using the geometrical argument 
shown in Figure 3.  
 
The ship’s center of gravity g is always in the 
same vertical line as the center of buoyancy Γ, 
but this geometry is not constant due to the 
ship’s movement. If the ship has a very high 
center of gravity I, and moves even a little from 
the upright position (waterline A-B) to another 
position (waterline a-b), it is no longer stati-
cally stable; the center of buoyancy moves 
from Γ to γ, i.e., away from the vertical of  the 
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Figure 3: BOUGUER's diagram of the  
                metacenter, [2], fig. 54. 
 
He denotes: 

p = submerged volume 
Γ = upright CB 
γ =  inclined CB 
AB = upright waterline 
ab = inclined waterline 
I = CG of an unstable ship 

 G = CG of a stable ship 
 g = metacenter 
 1 = centroid of immersed wedge 
 2 = centroid of emerged wedge 
 3 = centroid of body without wedges  
 
center of gravity, and the vertical force of 
buoyancy shifts from Γ-Z to γ-z. The ship’s 
weight, centered at I and on the opposite side 
of the inclination from the new center of 
buoyancy, tends to push the ship even further 
over, rendering it unstable.  However, if the 
center of gravity of the ship is at G, below the 
intersection g of the upright and inclined 
vertical forces of buoyancy, then the center of 
gravity is on the same side as the new center of 
buoyancy and the resulting force always tends 
to restore the ship to the horizontal. 
 
BOUGUER states in his definition of the 
metacenter [26]: 

 “Thus one sees how important it is to know 
the point of intersection g, which at the 
same time it serves to give a limit to the 

height which one can give the center of 
gravity G, [also] determines the case where 
the ship maintains its horizontal situation 
from that where it overturns even in the 
harbor without being able to sustain itself a 
single instant. The point g, which one can 
justly title the metacenter [BOUGUER’s 
italics] is the term that the height of the 
center of gravity cannot pass, nor even 
attain; for if the center of gravity G is at g, 
the ship will not assume a horizontal 
position rather than the inclined one; the two 
positions are then equally indifferent to it: 
and it will consequently be incapable of 
righting itself, whenever some outside cause 
makes it heel over.”  

 
BOUGUER does not use the terms “stable” or 
“unstable”, but rather states that G is either 
lower or higher than g. 
 
Step 5: Evaluation of the criterion 
The determination of this point of intersection, 
BOUGUER says, reduces to the question of the 
distance between the centers of buoyancy Γ 
and γ of the submerged body upright and just 
slightly inclined.  BOUGUER employed the 
all-important shifting of equal immersed and 
emerged wedges to determine this distance, by 
drawing a triangle between points 1, 2 and 3.  
Since the centers of buoyancy Γ and γ lie on 
the legs of that triangle, the distance Γ – γ must 
be proportional to the distance between points 
1 and 2, and the distance between Γ and point 3 
must be proportional to the ratio of the volume 
of the underwater hull and the wedges.  This 
geometrical explanation sets the stage for the 
second half of the explanation, the 
mathematical analysis of the mechanics of 
stability. 
 
Step 6: Results 
In the next section, BOUGUER uses calculus 
to determine the three unknowns: The distance 
from point 1 to point 2; the volume of the 
wedges; and the volume of the hull. 
BOUGUER imagines that Figure 3 represents 
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the largest section of the ship, which actually 
extends through the plane of the page in the 
longitudinal direction x, with the immersed and 
emerged wedges actually an infinite sequence 
of triangles of width y (the largest being b = F-
B, or the half-breadth of the hull at the 
waterline) and height e ( = H-B) going through 
the length of the hull at a distance dx from each 
other; integrating, the volume of the wedge is  

Vwedge = 
b
e

2
 ∫ y2 dx   (1) 

The second unknown is the distance between 
the centers of the wedges, points 1 to 2; but 
since the center of a triangle is two-thirds the 
height from apex to base, it is straightforward 
to obtain this distance as 

Distance 1- 2  = 
∫

∫

dx2y3

dx3y4    (2) 

 
The third unknown, the volume of the hull p, is 
derived using the trapezoidal rule. Putting the 
three together, the distance is: 

Γγ  = 
bp3

dx3ye2 ∫  (3) 

 
Finally, observing that the triangle Γgγ (i.e., 
between the centers of buoyancy and the 
intersection of their vertical lines of force) is 
similar to the triangles formed by the immersed 
and emerged wedges, the height of the 
metacenter g above the center of buoyancy Γ is 
found via Euclid to be: 

Γg  = 
p3

dxy2 3
∫  (4) 

This is the now-famous equation for the height 
of the metacenter. 
 
Implications of the metacenter 
BOUGUER develops in thorough detail both 
the theoretical and practical aspects of the 
metacenter. He derives the metacenter for 
various solids (ellipsoid, parallelepiped, 
prismatic body) and presents the procedures for 
its practical, numerical calculation for ships. 
These explanations were detailed enough for 

practical applications and became the 
foundation for later textbooks. 
 
But BOUGER also charged ahead beyond the 
initial metacenter for infinitesimal angles of 
heel when he introduced the concept of the 
“métacentrique”, i.e., the metacentric curve for 
finite angles of heel. First, he clearly 
recognized that the same physical principles 
and stabilty criteria apply to an inclined 
position of the the ship as they do for the 
upright case. Second, he recognized that the 
metacentric curve for finite angles is in fact the 
locus of the centers of curvature of the curve of 
the centers of buoyancy. This was a brilliant, 
original insight. The locus of the centers of 
curvature of a curve was known since 
Christiaan HUYGENS’s work on the 
pendulum clock [27] under the name of 
“développée” (or evolute). Third, BOUGUER 
also knew how to construct the evolute of a 
given curve. For a wall-sided ship (or 
parallelepiped) the metacentric curve is a cusp 
shaped curve composed of two hyperbolas 
lying above the metacenter, as BOUGUER 
showed. His demonstration examples for the 
“métacentrique” do document that he 
understood how to approach stability for finite 
angles of heel, though he never used a “righting 
arm” criterion. 
 
On practical aspects of initial stability he 
recommends that the widest point of the ship 
be no lower than where the maximum heel 
would be before it begins to tumble-home, or 
even that ship sides be straight or flared 
throughout. In other words, BOUGUER was 
advising to avoid tumble-home altogether, 
although in somewhat oblique terms. 
 
BOUGUER next provides a numerically-
worked example of the application of the 
metacenter to a real ship, underlining the 
importance of Gg, the distance between the 
center of gravity and the metacenter. Using the 
Gazelle as his model, BOUGUER explains 
how to account for the weight of each part of 
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the ship, including the frames, planking, nails, 
etc., how to measure the center of gravity of 
each piece using the keel as the reference point, 
and how to sum the moments to obtain the 
overall center of gravity G. He then calculates 
displacement and center of buoyancy of the 
ship using the trapezoidal rule, which enables 
him to find the metacenter g. His calculations 
confirmed that, once properly ballasted, the 
Gazelle would be stable. 
 
BOUGUER continues for almost 50 pages to 
outline the practical implications of the 
metacenter on hull design and outfitting.  In 
many cases the implications are re-statements 
of what constructors already knew; but 
BOUGUER provided for the first time a 
rigorous analysis of why they were true. Some 
of the main points he brings out are: 
• The greatest advantage to stability lies in 

increasing the beam. BOUGUER claims 
that the ”stability” varies as the cube of the 
beam, by which he must have been 
referring to the transverse moment of 
inertia IT, while the metacentric radius 
requires closer scrutiny. But he wanted to 
emphasize the rapid increase of stability 
with beam. This also explains for the first 
time why doubling a ship improves 
stability, although BOUGUER does not 
explicitly state so. 

• Stability is improved by diminishing the 
weight of the topsides; though this was 
well-understood, BOUGUER details how 
to accurately assess the effects.  

 
BOUGUER also correctly describes for the 
first time how to evaluate the inclining 
experiment, for whose basic idea he credits 
HOSTE, in order to determine Gg, the distance 
between the center of gravity and the 
metacenter. In Figure 4, he demonstrates how 
to use a known weight suspended from a mast 
to incline the ship and measure the angle of 
heel. Using the law of similar triangles, he 
shows that the ratio of the ship’s displacement 
and the suspended weight is proportional to the 

ratio of Gg to the angle of heel and distance the 
weight moves; on the assumption of small 
angles of heel this allows Gg (i.e., the reserve 
of stability) to be calculated directly without 
knowing the exact position of the metacenter. 

 
 
Figure 4: BOUGUER's diagram of an inclining  
               experiment, [2] fig. 55. 
 
BOUGUER demonstrates how to use his 
metacenter by detailing the calculations of 
weights and centers of gravity for Gazelle 
while it was still being framed out. It is 
therefore curious that he did not verify this by 
performing an inclining experiment on Gazelle. 
It would appear that, while BOUGUER was 
completing his initial stability work in 1734, he 
was caught up in the events that led to the 
Geodesic Mission, and would not return to the 
subject until he was in the mountains of Peru. 
 
 
3.2 Euler 
 
Biographical sketch 
Leonhard EULER (Figure 5) was born in 
Basel, Switzerland on 15 April 1707. He was 
the son of Paulus EULER, parson of the 
Reformed Church, and his wife Margaretha née 
BRUCKER. He went to a Latin grammar 
school in Basel and, as his father recognized 
his talent early, took private lessons in 
mathematics. In 1720 he enrolled at the 
University of Basel as a student and later as a 
young scientist, the first three years in 
philosophy where he received a Magister’s 
degree, then in theology. But he soon turned 

 
 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 
Escuela Técnica Superior de Ingenieros Navales 

 15 

his main interest to mathematics and 
mechanics, which he studied under Johann (I) 
BERNOULLI, who was recognized as a 
leading mathematician of that era. In fact 
Johann (I) BERNOULLI, who was 40 years 
EULER’s senior, saw EULER’s maturing 
genius and invited him to join the Saturday 
afternoon “privatissimum” in mathematics, a 
private circle held in the BERNOULLI’s home, 
where he also met and made friends with 
younger members of the BERNOULLI family, 
notably Niklaus (II), Daniel (I) and Johann (II) 
BERNOULLI. In this period Johann (I) 
BERNOULLI laid the foundations from which 
EULER’s later mathematical fame developed. 
 

 
 
Figure 5: Portrait of Leonhard EULER  
 
In 1727 EULER, who had been looking for an 
academic position, received an offer from the 
Russian Imperial Academy of Sciences in St. 
Petersburg, which Tsar Peter had initiated and 
which had been opened in 1725, where Niklaus 
(II) and Daniel (I) BERNOULLI held 

appointments as professors from this 
beginning. EULER accepted this prestigious 
offer, starting as an Adjunct (élève) for a 
modest salary, and arrived there – after a three 
month voyage by coach and by ship- in June 
1727. EULER began his scientific career in St. 
Petersburg very successfully, advanced to a 
professorship in physics and full membership 
in the Academy in 1731, and spent his “First 
St. Petersburg Period” (1727-1741) very 
productively, working on a wide range of 
scientific subjects and publishing more than 50 
treatises and books. 

 
In 1741, amidst political transitions and 
uncertainties in Russia, EULER received an 
attractive offer from King FREDERICK II of 
Prussia to come to Berlin and to work for the 
Royal Academy of Sciences, which was to be 
founded. EULER moved there in 1741, 
continued his illustrious scientific work on an 
increasing variety of subjects, and when the 
Academy at last opened in 1746 soon became 
recognized as one of its most eminent members 
and as the leader of the mathematical class. He 
remained immensely productive and published 
some of his most famous books and treatises 
during his period in Berlin from 1741 to 1776. 
 
Despite EULER’s scientific fame and the 
considerable merits he earned in the Berlin 
Academy during its formative first two decades 
he never developed a relationship with King 
FREDERICK that made him feel recognized, 
appreciated and understood. This was one 
contributing factor why after 25 years in 
Prussian service he decided to return to St. 
Petersburg. There he was welcomed and 
honored at all levels, and spent his “Second St. 
Petersburg Period (1766-1783)” in relative 
comfort, peace and recognition despite his 
weakening health and fading eyesight. His 
scientific creativity never ceased. A large share 
of his more than 800 treatises and books also 
stems from this second period in Russia. His 
work encompasses the full gamut of scientific 
topics in his era, not only in mathematics and 
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mechanics, but also in other branches of 
physics, astronomy, ballistics, music theory, 
philosophy and theology. He died in St. 
Petersburg in 1783. 
 
More detailed accounts of EULER’s life and 
scientific vita are given by BURCKHARDT et 
al. [28], FELLMANN [29] and CALINGER 
[30]. 
 
Early work in ship theory 
In 1726 the Académie des Sciences in Paris 
invited contributions to a prize competition on 
the optimum placement, number and height of 
masts in a sail propelled vessel. EULER as a 
student and protégé of Johann (I) BER-
NOULLI was of course familiar with the 
earlier treatises and disputes that had arisen 
about the forces acting on a sail propelled 
maneuvering vessel between RENAU, HUY-
GENS, Johann (I) BERNOULLI a.o. So he felt 
well enough prepared, also encouraged by 
Johann (I) BERNOULLI, to submit a treatise 
(“De Problemate Nautico…”, [31]) in 1727, 
which gained honorable mention, an “accessit” 
equivalent to a second prize. Pierre BOUGUER 
was awarded the first prize. In this treatise 
EULER, who still treads in the foot-steps of 
Johann (I) BERNOULLI, does not yet show 
deeper insights into ship hydrostatics although 
he does draw attention to the requirement that 
for a ship before the wind the propelling sail 
force is limited by the acceptable forward trim 
angle. But he has no reliable physical basis for 
estimating that angle. Yet this early experience 
in his life at the age of 20 gave EULER a first 
thorough acquaintance with the mechanics of 
ships, familiarized him with nautical and ship 
construction termi-nology and created in him a 
lasting interest in ships as topics to be studied 
by methods of mathematical analysis and 
engineering mechanics. 
 
In St. Petersburg EULER soon had ample 
opportunities to return to these subjects. It is 
not clear when he first occupied himself more 
deeply with ship hydrostatics. But evidently the 

appearance of LA CROIX's treatise on the 
hydrostatic stability of a parallelepiped in 1735 
found EULER well prepared, when the 
Academy asked for his review, to detect certain 
flaws in LA CROIX’s derivations and to 
present the correct result for this simple shape, 
which first established EULER’s initial 
restoring moment criterion on hydrostatic 
stability. In his second review in 1736, in 
response to LA CROIX’s rebuttal, EULER 
went beyond his first results, dealt with some 
other prismatic shapes (trapezoidal and 
triangular prisms) and alluded to his general 
approach to stability [17]. This evidence is 
sufficient to date EULER’s earliest written 
mention of the hydrostatic stability criterion. 

 
There is also some indirect evidence of 
EULER’s earliest results on hydrostatic 
stability in his correspondence with the Danish 
naval constructor and naval attaché in London, 
Friderich WEGERSLØFF, which he 
maintained between 1735 and 1740. In a letter 
of 14 September 1736 WEGERSLØFF 
acknowledges receipt of a solution for the 
hydrostatic stability problem, on 22 May 1738 
EULER replies and gives a derivation of his 
stability results and also mentions some 
experimental verification [32]. It is not clear 
from the context what sort of tests he had 
performed. 
 
By 1737 EULER’s interests in ship theory 
were well known at the Imperial Academy. 
Thus - probably not without his own prior 
knowledge or suggestion - he was com-
missioned by the Academy to write a book on 
this subject, resulting in his monumental two-
volume “Scientia Navalis”. This work 
encompasses a presentation of the complete 
scope of ship theory according to the state of 
the art at that time and includes many new 
findings and derivations by EULER. The 
chapters in the two parts deal with ship 
hydrostatics, ship resistance and propulsion, 
maneuvering and ship motions. Many results 
have been of lasting value and have served as 
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foundations for the growing scientific body of 
ship hydromechanics. According to EULER’s 
own report in the Preface of “Scientia Navalis”,   
he had worked on this manuscript from 1737 to 
1740 [33]. When he left St. Petersburg in 1740 
he had completed the first part, which contains 
all four chapters on hydrostatic equilibrium and 
stability, and half of the second part. The 
remaining sections of Part 2 were finished by 
1741 in Berlin. Unfortunately, he had much 
difficulty finding a publisher for this 
voluminous opus, which thus was not 
published until 1749 by the Academy in St. 
Petersburg. 
 
Comprehensive appraisals of EULER’s overall 
contributions to ship theory and related matters 
are given by HABICHT [34], MIKHAILOV 
[35] and TRUESDELL [36]. 

 
The initial stability criterion 
To understand the history of EULER’s 
involvement in ship theory it is important to 
read the Preface to his “Scientia Navalis”. Here 
he explains that his work will go beyond the 
established disciplines of hydrography or 
nautical science and will concentrate on a 
physical and analytical investigation of the 
mechanics of ships, at rest and in motion, for 
which fundamental theoretical works were still 
missing at that time. In hydrostatics EULER 
departs from the Principle of ARCHIMEDES, 
to whom in the preface of “Scientia Navalis” 
he gives credit and praise. But he adds that the 
hydrostatic stability of ships must be newly 
approached and quantified in order to be able 
to distinguish between stable and unstable 
equilibrium of ships at the design stage. The 
experience of naval architects (“architecti 
navales”) alone, long established as it may be, 
will not be sufficient to prevent unexpected 
stability accidents.  

 
EULER acknowledges the motivation he 
received from reviewing de LA CROIX’s 
treatise in 1735-1736, which prompted him to 
investigate more profoundly the transverse and 

longitudinal stability of ships. EULER also 
gives very favorable credit to BOUGUER’s 
“Traité du Navire”, which had appeared 3 years 
before “Scientia Navalis”, but he takes much 
care also to avert any suspicion of plagiarism 
by calling on the Imperial Academy as wit-
nesses that he had written “Scientia Navalis” 
essentially between 1737 and 1741 during 
which period there was no communication with 
BOUGUER who was in Peru. These statements 
were never disputed between the two authors, 
who corresponded in a respectful and amicable 
fashion on other subjects later. 
 
EULER’s derivation of his stability criterion in 
“Scientia Navalis” proceeded in the following 
steps [37]: 
 
STEP 1: Premises and axioms 
In the first chapter of Book I,  EULER deals 
with the equilibrium of bodies floating in water 
at rest. In essence he rederives the Hydrostatic 
Principle of ARCHIMEDES from the modern 
viewpoint of infinitesimal calculus by integra-
tion of the hydrostatic pressure distribution 
prevailing in a fluid over the surface of the 
body. The properties of the fluid at rest and the 
use of calculus for this purpose both were new 
at the time when EULER wrote these passages. 
As for the pressure distribution he states 
axiomatically in the opening paragraph of his 
book: 

 
“Lemma: The pressure which the water 
exerts on the individual points of a sub-
merged body is normal to the body surface; 
and the force which any surface element 
sustains is equal to the weight of a straight 
cylinder of water whose base is equal to the 
same surface element and whose height is 
equal to the depth of the element under the 
water surface”. 

 
These brief axioms, viz. the normality of 
pressure to a surface and the inferred equality 
of the pressure at a point in a given depth in all 
directions, were the first analytical formulation 
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for the properties of the fluid and are regarded 
as the necessary and sufficient conditions for 
the foundation of hydrostatics [38]. 

 
STEP 2: Magnitude of buoyancy force 
From these premises EULER proceeds to 
define by integral calculus the buoyancy force 
as the pressure resultant and the center of 
buoyancy (EULER calls the CB: “centrum 
magnitudinis”), through which it acts, as the 
volume centroid of the submerged part. He 
reconfirms also that for equilibrium the 
buoyancy and weight forces must act in the 
same vertical line and must be equal in 
magnitude and opposite in direction. He then 
illustrates these principles by examples of 
simple shapes like parallelepipeds and prisms 
of triangular and trapezoidal cross section. For 
each of these solids he finds the possible 
equilibrium conditions over a full circle of 
rotation as a function of the specific weight of 
these homogeneous solids, not unlike 
HUYGENS in his unpublished treatise of 1650. 

 
In Chapter II, briefly digressing from 
hydrostatics, EULER discusses the resulting 
motions of a floating body if it is temporarily 
displaced from its “upright” equilibrium 
position. Here he explains the “lumping” of 
masses in their center of gravity (CG), 
introduces the definition of the principal axes 
of inertia for ships, underscores the 
significance of the CG as a reference point, 
e.g., for decomposing a resulting motion into 
the translation of the CG and the rotation about 
it. EULER will adhere to the CG as his system 
reference point, also when returning to ship 
motions later. 
 
STEP 3: Measurement of volumes and volume 
centroids 
In stark contrast to BOUGUER, EULER 
confines himself to analytical definitions of 
stability criteria, volumes, centroids, areas, 
moments of inertia etc. He does not address 
their numerical evaluation at all. He is taking it 
for granted that once the shape of the ship or 

body is defined by some function the 
integrations can be readily performed. In his 
examples he usually deals with simple shapes 
where the integrations can be performed in 
closed form. 
 
STEP 4: Stability criterion 
In Chapter III, the main chapter on hydrostatic 
stability, EULER defines his stability criterion 
right away (Proposition 19) by: 
 

“The stability which a body floating in 
water in an equilibrium position maintains, 
shall be assessed by the restoring moment if 
the body is inclined from equilibrium by an 
infinitesimally small angle”. 

 
EULER illustrates this principle by discussing 
cases of unstable, neutral and stable 
equilibrium of ships and adds that it is 
necessary to quantify stability in terms of the 
restoring moment because even a stable ship 
may be in danger by external heeling moments 
and may require righting moments of greater 
magnitude. (The issue is not only whether the 
ship is initially stable or not, but also how 
much “stability capacity” it has). 

 
Figure 6: EULER’s figure for centroid shift in  
       inclined cross section, 2D case, [3] fig. 39. 
 
STEP 5: Evaluation of the criterion 
EULER then enters into the determination of 
the restoring moments by first examining a 
planar cross section of arbitrary shape (or thin 
disk) floating upright (Figure 6). The Figure 
AMFNB = “AFB” is inclined by a small angle 
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dw so that the new floating condition has the 
waterline ab. Since the center of gravity G 
remains his reference point, also for later 
purposes, he draws the parallel lines MN and 
mn to the waterlines before and after 
inclination, also through G. The center of 
buoyancy of the cross section is designated by 
O. A normal VOo to the inclined waterline is 
drawn through O. The equality of the immersed 
and emerging wedges requires that ab 
intersects AB at the center point C so that AC = 
BC. Let the displacement per unit length and 
the equal buoyancy force of the cross section 
before inclination be denoted by M =  γ (AFB). 
For the inclined position the restoring moment 
is composed of three contributions: 
 
1. The effect of the original submerged volume 
forming a positive restoring couple of forces 
through G and V: 
    M GV = M GO dw  (5) 
 
2. The effect of the submerged wedge CBb 
whose cross section area is: 

   
2
dwBC2

 = 
8

dwAB2

 (6) 

and whose restoring moment about G hence is: 

γ
2

dwAB2

(qo + GV)   (7) 

where   qo = 
3
2 Cb = 

3
1 AB 

 
3. Likewise for the emerging wedge ACa the 
restoring moment is 

-γ
8

dwAB2

(po - GV)    (8) 

where   po = 
3
2 Ca = 

3
1 AB 

For all moments combined, replacing γ by M/ 
(AFB): 

M REST = M GO dw + 
AFB8

)qopo)(dwAB(M 2 +      

=   Mdw [GO + 
AFB12

AB3

]    (9) 

 

The expression in square brackets has the 
dimension of a length and is the now well 
known result, corresponding to, in 
BOUGUER’s later terminology, the 
metacentric radius of the cross section. This is 
how EULER’s restoring moment and 
BOUGUER’s metacentric radius are 
connected. Note that the GO term reverses sign 
if G lies above the center of buoyancy O, as is 
common in cargo ships. EULER discusses this 
result at some length and for several simple 
shapes. 

 
Figure 7: EULER’s figure for the derivation of 
   the stability criterion for a body of arbitrary  
   shape, 3D case, [3] fig. 48. 
 
In Proposition 29 EULER then arrives at the 
general three-dimensional case of a floating 
body of arbitrary, in particular asymmetrical 
shape, whose waterplane is drawn in Figure 7. 
He denotes: 

M = displacement or weight of body 
V = submerged volume 
GO = distance between CG and CB, 
positive for G above B 
CD = reference axis of waterplane 
through centroid of waterplane area, 
parallel to axis through G 
CX = x = abscissa from origin C 
XY = y = ordinate in upper part of 
waterplane 
XZ = z = ordinate in lower part of 
waterplane 
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 p and q = area centroids of upper and 
lower parts of waterplane 
 P and Q = equivalent pendulum lengths 
of waterplane area parts w.r.t. axis CD 

 
With 

  pr = 
∫

∫
ydx2

dxy 2

       qs = 
∫

∫
zdx2

dxz 2

 

PR = 
∫
∫

dxy

dxy

3
2

2

3

   QS = 
∫
∫

dxz

dxz

3
2

2

3

 

 
Euler derives, since the axis CD runs through 
the waterplane centroid: 
 

∫ y2 dx = ∫ z2 dx,        and hence 

PR + QS  = 
∫

∫ +

dxy

dx)zy(

3
2

2

33

  (10) 

 
from which in analogy to the planar case the 
restoring moment, divided by the angle dw, for 
the ship becomes: 

M (GO + 
V3

dx)zy( 33∫ +
)    (11) 

 
In the special case of port/starboard symmetry 
(y = z), with  

    IT = 
3
2 ∫ y3 dx;  and   

V
IT  = OM     

 
In our familiar notation (GO= GB , OM= BM ) 
the restoring moment simplifies into: 
     M ( GB + BM ) = M GM   (12) 
 
STEP 6: Results 
This summarizes the course of steps EULER 
took to derive the initial restoring moment. 
EULER never used the word metacenter. 
EULER’s result thus is the initial restoring 
moment, divided by (M dw), which he uses as 
his stability criterion. 
 

Again EULER illustrates this result by many 
examples for simple shapes of solids, even by 
an analytical formulation for a shiplike body 
with parabolic section shapes. But he does not 
present any numerical calculations for an actual 
ship although he discusses many practical 
implications of his results.  
 
Implications of the stability criterion 
EULER interprets his results for practical 
applications to ships, mainly in Part II of 
“Scientia Navalis”. For EULER ships are 
“floating objects, carrying a cargo or payload, 
symmetrical starboard and port, propelled by 
rowing and/or sails”. Among the major 
conclusions he draws, we quote: 
 
• Stability is judged by the restoring moment 

divided by the angle dw. 
• Transverse and longitudinal stability are 

clearly distinguished and both addressed. 
EULER also derives an expression for 
combined heel and trim under oblique sail 
force moments, deriving the oblique 
restoring effects by rotation of the reference 
axis from the principal axes. 

• To assess stability you need to know the 
ship’s displacement, the centroids CB and 
CG, the waterplane area and shape, which 
infers the restoring moment (without using 
the metacenter). 

• To improve stability, lower the CG, raise 
the CB and/or widen the beam. 

• The addition, removal and internal shifts of 
weight as well as the role of ballast for 
stability are discussed. 

• The use of doubling (“soufflage”) with its 
pros and cons is mentioned. 

• In Chapter IV of Part 1 EULER addresses 
practical problems of inclining ships under 
external moments or by internal weight 
shifts, though again only analytically, not 
numerically. 

• He also addresses the issue of external 
wind loads and required stability, especially 
for small ships vs. big ships, cargo ships vs. 
war ships. 
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EULER finally also makes the interesting 
“philosophical” remark that sailors knew about 
measures of stability all along. When the 
sailors say, “This ship can sustain a strong 
wind in its sails”, then EULER claims they 
mean the same thing as he expresses by his 
restoring moments. 
 
EULER’s contributions to ship hydrostatics are 
of lasting value and are based on his strengths 
in physical intuition and analytical perception. 
 
 
3.3  Comparison of approaches 
 
Based on the facts presented above it is now 
possible and in fact intriguing to compare the 
approaches taken by BOUGUER and EULER 
in their creative work on hydrostatic stability. 
This will bring out certain commonalities, but 
also underscore the differences. We have 
examined several aspects. 
 
Chronology: 
BOUGUER worked on the subject of ship 
hydrostatic stability from about 1732 to at least 
1740, and his treatise was published in 1746. 
EULER was engaged with this topic between 
about 1735 and at least 1740, “Scientia 
Navalis” appeared in 1749. During these 
formative periods of their new concepts there 
existed no contacts and no communications 
between them. Thus their work originated 
independently. 
 
But after their first scientific acquaintance 
through their participation in the 1727 Paris 
Academy award competition it is likely that 
they both underwent a common fermentation 
period on related subjects. Probably they were 
both looking for the missing pieces in the 
mosaic of sailing ship maneuvering, among 
which the hydrostatic response was foremost. It 
appears that their deeper familiarity with 
ARCHIMEDES originated during the period 
between 1727 and 1735. 
 

Sources 
BOUGUER writes that he was familiar with 
the work of PARDIES, HOSTE, RENAU, 
most likely also with relevant publications by 
HUYGENS and the BERNOULLIs. He shows 
close acquaintance with ARCHIMEDES’ 
principles, although he does not mention his 
name. On calculus he quotes the well-known 
treatise by NEWTON and Roger COTES, but 
very likely he also thoroughly read de 
l’HÔPITAL, whose notation in the LEIBNIZ 
style he preferably uses. His knowledge of 
calculus was mostly self-taught, based on 
occasional tutorials and recommendations from 
mathematics professor Charles René 
REYNEAU, who wrote the basic textbook on 
the subject, "Analyse démontrée" in 1708. 
 
EULER also knew ARCHIMEDES, HOSTE, 
RENAU, whom he mentions. He learnt 
calculus first-hand from the BERNOULLIs, 
who stood firmly in the LEIBNIZ tradition. 
EULER’s book on mechanics, “Mechanica” in 
2 vols., where he displays exquisite knowledge 
of the principles of equilibrium and motions of 
mechanical systems, had appeared in 1736. 
 
Although both authors are not very generous in 
giving references on their sources it is possible 
to a certain extent to trace their intellectual 
ancestry by looking at their scientific and 
technical terminologies, even if they wrote in 
different languages, French and Latin. We have 
analyzed their vocabularies in their main 
treatises on hydrostatic stability and identified 
commonalities and distinct differences. They 
shared much common ground by using such 
established words as equilibrium, stability, 
weight, buoyancy, specific weight, centers of 
gravity and buoyancy, inclination (derived 
from ARCHIMEDES) and pressure, 
hydrostatics (from STEVIN and PASCAL). 
BOUGUER is unique in inventing the 
metacenter and using the evolute (HUYGENS), 
but never the word “restoring moment”, while 
EULER's vocabulary was vice versa. This 
indicates where their approaches differed. 
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Stability criteria 
Sections 3.1 and 3.2 have shown that 
BOUGUER and EULER derived equivalent 
stability criteria, but used different approaches. 
To sum up the comparison:  
 
Premises and axioms: BOUGUER’s work is 
founded on the premises of ARCHIMEDES, 
though augmented by a hydrostatic pressure 
law (STEVIN). EULER defines the axioms of 
hydrostatics a bit more strictly by postulating 
the direction independence of pressure and its 
normality to a surface. 
 
Magnitude of buoyancy force: Both agree and 
reconfirm the law of ARCHIMEDES by 
pressure integration and calculus. 
 
Measurement of volumes and centroids: 
BOUGUER takes the route of establishing 
numerical procedures, based on quadrature 
rules, for measuring volumes, centroids, areas 
etc. before giving analytical definitions of the 
stability criterion. In passing he skillfully 
adapts the "method of trapezoids" to 
shipbuilding applications. EULER skips this 
step entirely and drives directly at analytical 
formulations for his stability criterion. 
 
Stability criterion: BOUGUER’s invention and 
choice for a measure of stability is 
“metacentric radius”, a geometric quantity 
representative of initial stability capacity. 
EULER chooses the “initial restoring 
moment”, a physical quantity, also measuring 
the ship’s initial stability capacity.  Although 
the two ideas are closely connected, their 
meanings are conceptually different. 
BOUGUER never refers to “restoring 
moments”, EULER never uses “metacenter”. 
Neither author recurs to ARCHIMEDES’ idea 
of a “righting arm”. 
 
Evaluation of the criterion: BOUGUER 
derives the metacenter mainly from geometric 
arguments and, allowing for the shift of wedge 

volumes and hence CB, determines the 
metacenter as the point of intersection of the 
upright and inclined buoyancy directions. 
EULER uses physical arguments of moment 
equilibrium and shift of volumes and finds the 
restoring moment simply by a summation of 
moments. 
 
Results: BOUGUER’s result is metacentric 
radius, a distance. EULER’s result is a 
restoring moment. The two results are 
equivalent in practice, but not equal in 
approach. 
 
Clientele, style and language: 
BOUGUER’s "Traité du navire", the first 
modern synthesis of theoretical naval 
architecture, is written in French for a 
readership of scientists and constructors who 
are to be introduced to the use of theory in 
practical ship design and shipbuilding. 
BOUGUER benefited from both his experience 
as a hydrographer and his collaboration with 
ship constructors. His style is clear and logical, 
explaining many practical details, almost as in 
a textbook. He is concerned about how this 
methodology can be implemented. This style 
does not cause any sacrifices in rigor. His 
language is lucid, his own new ideas come 
across crisply. 
 
EULER in his Latin text of “Scientia Navalis” 
writes as an applied mechanicist/physicist and 
addresses mainly the scientific community of 
his era. Among those who were educated to 
read scientific treatises of this sort in Latin, 
which was still a lingua franca in the academic 
world, EULER’s brilliance of style, his 
inimitable logic and clarity were highly 
praised. These attributes also apply to his 
“Scientia Navalis”. His work on hydrostatic 
stability is still valid today. But at the same 
time he did not have any experience with 
practical shipbuilding applications. Thus he left 
many details for implementation by later 
successors, which delayed the spreading of his 

 
 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 
Escuela Técnica Superior de Ingenieros Navales 

 23 

methods, certainly in comparison to 
BOUGUER. 
 
Yet in the final balance the scientific and 
engineering community must be grateful to 
both BOUGUER and EULER. 
 
3.4  Synopsis  

 
Table 1 gives a synopsis of important 
milestones and ideas in the development of the 
theory of hydrostatic stability by indicating 
where certain elements of this theoretical 
knowledge first occurred. The importance of 
ARCHIMEDES’s physical insights and the 
relevance of BOUGUER’s and EULER’s 
parallel discoveries  described by calculus 
become clearly visible in this condensed 
tabular summary of historical steps. 
 
 
4. FURTHER WORK  
 
4.1 Practical applications 
 
Stability theory quickly found direct 
applications in the day-to-day practice of ship 
design. This occurred in two ways: first, by the 
increasing sophistication of calculations for 
weights, centers of gravity and the metacenter 
within the design process; and second, by the 
use of inclining experiments to validate 
stability. These applications were surprisingly 
widespread; stability theory was quickly 
incorporated in navies where there was already 
a strong institutional development of scientific 
naval architecture, notably in France, Denmark, 
Sweden and Spain. Those countries also 
created schools of naval architecture during the 
18th century, where students were weaned on 
stability theory and naturally used it when they 
became constructors at the dockyards. This was 
not the case for the British or Dutch navies, 
which had provided little direct support for 
scientists working on ship theory, and which 
did not establish permanent schools of naval 
architecture until the 19th century.  

 
Stability calculations during design 
The most famous of these schools of naval 
architecture was the Ecole du Génie Maritime, 
established in 1741 in France by the scientist 
Henri Louis DUHAMEL DU MONCEAU 
(1700-1782), whom MAUREPAS had 
nominated as Inspector-General of the Navy. 
 
DUHAMEL worked with BOUGUER to create 
the first comprehensive textbook for the 
students, based on "Traité du navire".  
DUHAMEL's genius was to take BOUGUER's 
complex mathematics and render them into 
step-by-step instructions on how to calculate 
the metacenter.  The textbook, "Elémens de 
l'architecture navale" [39] became the standard 
reference for both students and constructors. 
 
DUHAMEL DU MONCEAU was also 
involved in developing the Ordinance of 1765 
under Navy minister Etienne François, duke of 
CHOISEUL, which created the Corps du Génie 
Maritime and formalized the data to be 
included on ship's plans: "centers of gravity 
and resistance, and height of the metacenter" as 
well as accompanying calculations and a 
tabulation of hull materials. Later, the 
standardized plans introduced in 1786 by 
DUHAMEL's successor as Inspector-General, 
Jean-Charles de BORDA, listed the specific 
immersion of the hull at full and light load in 
tonnes-per-cm equivalent, which allowed a 
rapid estimate of the effect of loading weights 
on the ship. 
 
Inclining experiments 
Another facet of rapid adoption of the 
metacenter was that the first recorded inclining 
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Table 1:  Historical development of stability concepts
  

No. Concepts and Methods First Described Archimedes 
bef. 212 BC 

Stevin 
1608 

Huygens 
1650 

Hoste 
1697 

La Croix 
1732-35 

Bouguer 
1732-46 

Euler 
1735-49 

1. Conceptual experiments √       
2.1 Gravity force √       
2.2 Resulting gravity force of a system of weights √       
2.3  Buoyancy force, its magnitude and direction √       
2.4 Hydrostatic equilibrium, Archimedes’ law √ √ √     
3.1 Concept of stable/unstable equilibrium √  √     
3.2 Test of “small” displacement √       
4.1 Couple of gravity & buoyancy forces as   

equilibrium criterion 
√  √     

4.2 Calculation of sign of couple for simple shapes √  √     
4.3 Center of gravity in same vertical as center of 

buoyancy  
√ √ √ √ √ √ √ 

4.4 Center of gravity may be higher than center of 
buoyancy 

   √ √ √ √ 

4.5 Explicit calculation of ship weight and center of 
gravity  by summing of weights and moments 

     √  

5.1 Method of wedges for ship stability calculations     √ √ √ 
5.2 Infinitely small wedges        √ √ 
5.3 Use of calculus in deriving stability equation      √ √ 
5.4 Calculation of buoyancy force and direction for  

arbitrary shapes 
     √ √ 

5.4 Use of the metacenter as a stability criterion      √ − 
5.5 Naming this point metacenter      √ − 
5.6 Stability criterion phrased in metacentric terms      √ − 
5.7 Stability criterion based on restoring moment      − √ 
6.1 Determination of stability by inclining 

experiment 
   √  √ − 

7.1 Metacentric curve for finite angles of heel      √ − 
7.2 Its founding in the evolute      √ − 
7.3 Metacenter calculations for finite angles  of heel      √ − 

 
took place in 1748, just two years after 
BOUGUER published his work.  Guillame 
CLAIRIN-DESLAURIERS, then a junior 
constructor at Brest, performed the 
experiment on the newly-built 74-gun ship 
Intrépide, apparently out of curiosity to test 
the new theory.  He hung two 24-pound 
cannons (each weighing over 2 tonnes) from a 
buttress built on the side of the ship, and 
although the buttress broke, he was able to 

take enough measurements to ascertain that 
the ship's GM was 1.8m [40]. 
 
CHAPMAN and SIMPSON’s Rule 
Another important contribution to the 
promulgation of hydrostatic stability 
calculations came from the Swedish naval 
constructor and innovative ship designer Fredrik 
Henrik CHAPMAN. CHAPMAN (1721-1808), 
the son of the superintendent of the
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Figure 8: CLAIRIN-DESLAURIERS'  drawing  
                of the inclining of Intrépide [40]. 
 
Göteborg dockyard, was endowed by this 
background with much practical shipbuilding 
knowledge.  He visited Britain in 1750 to 
improve his knowledge in mathematics and 
other fundamentals. He took classes from 
Thomas SIMPSON (1710-1761), a gifted 
mathematician trained in NEWTON’s tradition 
and an instructor at the Royal Military 
Academy in Woolwich near London. 
SIMPSON reportedly taught CHAPMAN a 
quadrature rule for planar curves, which yields 
a numerical approximation of the integral of a 
continuous function using at least one equally 
spaced double interval, hence at least three 
offset points per double interval, or any desired 
number of further double intervals of the same 
spacing. This quadrature rule later became 
known as “SIMPSON’s Rule”, especially in 
shipbuilding, although the rule has several 
historical precursors and SIMPSON never 
claimed to have invented it. CHAPMAN, after 
further visits to France and Holland and having 
picked up much valuable background including 
the recent findings by BOUGUER on the 
metacenter, returned in 1757 to Sweden to 
continue his career as an important ship 
constructor. In this process he soon made it his 
habit to calculate ship displacements (1767), 
also as a function of draft, and assessing the 
metacenter, applying SIMPSON’s Rule for 
numerical integration. His engineering methods 

applied in ship design became well known 
internationally soon after the publication of his 
book Tractat om Skepps-Byggeriet [42] in 
1775, where he explained his calculations in 
much detail (for examples, see Harris [43]). 
Thus CHAPMAN helped to promulgate the use 
of the metacenter and to make its calculation a 
routine matter among naval architects. At the 
same time SIMPSON’s Rule, which offers 
certain efficiency advantages over the 
trapezoidal rule for an equal number of 
intervals, was popularized and is still much 
favored today. 
 
 
4.2 Extensions of stability theory 
 
Hydrostatic stability about other axes 
In their work on the masting of sailing ships in 
1727 it must have occurred to both BOUGUER 
and EULER that in general the external wind 
moments would act in an oblique direction to 
the ship’s centerplane so that heeling and 
trimming would result simultaneously. EULER 
remembered this open question and in 
“Scientia Navalis”, Part 2, returned to this 
issue. He derived an expression for the 
restoring moment about an oblique axis 
between the axes of heel and trim. The 
moments of inertia about this axis could be 
constructed, when the moments of inertia IT 
and IL for transverse and longitudinal stability 
were known, by using an ellipse of inertia 
moment construction. Thus this method was 
able to predict at least the initial hydrostatic 
response (small angles) to a wind moment in an 
oblique plane in terms of simultaneous heel 
and trim angles. EULER mentioned on the 
side, too, that longitudinal stability was always 
much greater than transverse stability. 
 
It was some time later that the Spanish naval 
constructor and engineering scientist Jorge 
JUAN Y SANTACILIA (1713-1773), who 
knew BOUGUER and his work very well from 
the Peruvian expedition and also was in 
correspondence with several European 
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Academies, concerned himself not only with 
ship stability, but also with ship oscillations, 
especially with pitching motions. In this 
context he extended BOUGUER’s concepts of 
the metacenter to longitudinal inclinations and 
first introduced the definition of the 
longitudinal metacentric radius GML. He 
pointed out that it by far exceeds the transverse 
metacentric radius. His book "Examen 
Maritimo" [44], which appeared in 1771, 
combined the theoretical insights of his days 
with much practical design experience and 
became a widely used reference and textbook. 
   
Large angles of heel 
A broader extension of stability theory 
occurred not on the European continent but in 
Britain. In two papers presented to the Royal 
Society of London, the British mathematician 
George ATWOOD examined the inclination of 
ships at large angles of heel. The first paper 
[45] of 1796 based on a thorough knowledge of 
ARCHIMEDES, BOUGUER and EULER, 
reviews the fundamental physical principles of 
hydrostatic stability, applied to finite angles of 
heel. Here ATWOOD investigates the stability 
properties of homogeneous solids of simple 
shape (parallelepiped, cylinder, paraboloid) 
through 360 degrees of rotation as a function of 
body draft at rest (or specific weight). He finds 
numerous equilibrium positions (8 or 16), only 
some of them stable. He develops a shifted 
wedge volume method for finite heeling angles 
and reviews the numerical quadrature rules, 
settling for STIRLING’s 3 interval rule. This 
paper already drew full attention to the fact that 
stability must be judged over a range of finite, 
practical heel angles; initial stability alone is 
inadequate as a stability measure. 
 
In the second paper [46] of 1798, which 
ATWOOD coauthored with the French 
constructor Honoré-Sébastien VIAL DU 
CLAIRBOIS, the investigation was extended to 
actual ships, and for the first time a numerical 
analysis of the “righting moments” of ships 
over a large range of heeling angles was 

performed. ATWOOD and VIAL DU 
CLAIRBOIS introduced the term GZ for the 
“righting arm”, which was again numerically 
evaluated by a wedge volume shift method. 
This successfully demonstrated the feasibility 
of numerical stability analysis for actual ships 
over a range of finite heeling angles. The 
necessity of performing such calculations 
rather than just relying on initial stability 
measures was again underscored. Yet in 
shipbuilding practice it still took several more 
decades before the initial difficulties in 
numerical integration could be overcome by 
more robust methods and instruments. Even 
half a century later such stability evaluation 
had not yet become a routine matter. 
 
It was not before the early 19th century that the 
knowledge on the metacenter progressed one 
further step by the work of French constructor 
and mathematician Charles DUPIN from 
metacentric curves to metacentric surfaces 
[47]. DUPIN stated that the ship for finite 
angles of inclination in whatever direction 
possesses a surface of centers of buoyancy. 
This surface at every point has two principal 
curvatures, thus one can construct two sheets of 
metacentric surfaces, i.e., evolute surfaces of 
the buoyancy surface. The two metacenters for 
the upright condition, MT and  ML,  each is a 
special point on one of the surfaces.  
 
It is probably fair to say that at this level of 
perception the issue of hydrostatic stability had 
been fully resolved in terms of the relationships 
between ship geometry, physical responses to 
inclinations, and differential geometry of 
metacentric surfaces for finite angles of heel. 
 
 
5. CONCLUSIONS 
 
ARCHIMEDES laid the foundations for the 
stability of floating systems, introduced a 
stability measure similar to the righting arm 
and presented an approach for assessing the 
ability of a floating inclined solid to right itself. 
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But his applications were limited to simple 
geometrical shapes. Fortunately his manuscript 
“On Floating Bodies” survived in a few copies 
and became more accessible again by a Latin 
translation in the 13th c. and also in print after 
1500. Yet it took a few more centuries before 
modern hydrostatic stability was established 
and could be applied to actual ships, in 
particular also at the design stage. 
 
The interest in scientific solutions for ship 
stability gained new momentum for practical 
and scientific reasons by about 1700: 
 
• The leading navies were getting more 

concerned about stability risks with 
increasing ship sizes, gunports that were 
close to the water and increasingly heavier 
armament. 

• In the beginnings of the Age of 
Enlightenment, new expectations were 
raised with regard to the capabilities of 
science to predict physical phenomena and 
the performance of technical systems. 

• Mathematical breakthroughs occurred in 
infinitesimal calculus, analytical and 
numerical methods. 

• The modern age of engineering science 
made rapid progress in mechanics and 
hydromechanics, including the study of 
equilibrium and stability of mechanical 
systems. 

 
All of this contributed to an atmosphere in the 
scientific community in the early 18th c. that 
was open to new challenges, also in application 
to ships. Both BOUGUER and EULER were 
actively involved in these general develop-
ments and certainly exposed to this unique 
zeitgeist. BOUGUER responded to the 
recognized problem of hydrostatic stability 
more as an engineering scientist, EULER 
reacted rather more like an applied mechanicist 
and mathematician. Both were able to 
reformulate and solve this problem in their own 
unique and original ways. 
 

As our comparisons in this paper have 
reconfirmed, BOUGUER’s and EULER’s 
nearly simultaneous work was not only 
performed quite independently, which was 
never doubted, but was also distinctly different 
in approach and justification. Both investigated 
the ability of the ship to right itself after an 
infinitesimal heeling displacement. BOUGUER 
reasoned mainly geometrically and for the 
inclined ship derived a length measure, the 
metacentric height, as the decisive geometric 
measure of initial stability. EULER argued 
mainly on mechanical grounds and deduced the 
initial restoring moment as his measure of 
hydrostatic stability. Despite these contrasting 
styles of justification, as we appreciate today of 
course, both stability measures are in fact 
equivalent and can be converted into each 
other. We may still benefit from both lines of 
thought and should be grateful for the insights 
we owe to these two congenial pioneers. 
 
We have explained why it took several more 
decades before these landmark discoveries in 
ship stability were fully accepted and widely 
applied in shipbuilding practice. But the 
foundations laid by BOUGER and EULER 
have remained of lasting value as secure 
cornerstones in our knowledge for designing 
safe and stable ships. 
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